Robust design of experiments using constrained stochastic optimization
نویسندگان
چکیده
Process models that are affected by uncertainties need a robust mechanism to account for them in the model based design of experiments (DOE). The aim of this study is to design a set of experiments to estimate the parameters of multiscale kinetic models for the catalytic decomposition of ammonia. Along with uncertainties in the model, the problem is challenging due to constraints on experimental conditions. A stochastic D-optimal design is used to find the optimal experimental conditions using maximization of the expectation of properties of the Fisher information matrix (FIM). The expectation of FIM is calculated by sample average approximation (SAA) based on Monte Carlo simulations. Particle swarm optimization (PSO) is used to perform stochastic optimization to find the optimal set of experimental conditions. A novel method based on the rescaling of velocities is proposed for handling of equality and inequality constraints in particle swarm optimization.
منابع مشابه
Robust Coordinated Design of UPFC Damping Controller and PSS Using Chaotic Optimization Algorithm
A Chaotic Optimization Algorithm (COA) based approach for the robust coordinated design of the UPFC power oscillation damping controller and the conventional power system stabilizer has been investigated in this paper. Chaotic Optimization Algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool fo...
متن کاملDemand-oriented timetable design for urban rail transit under stochastic demand
In the context of public transportation system, improving the service quality and robustness through minimizing the average passengers waiting time is a real challenge. This study provides robust stochastic programming models for train timetabling problem in urban rail transit systems. The objective is minimization of the weighted summation of the expected cost of passenger waiting time, its va...
متن کاملA Robust Knapsack Based Constrained Portfolio Optimization
Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...
متن کاملA Robust Control Design Technique for Discrete-Time Systems
A robust state feedback design subject to placement of the closed loop eigenvalues in a prescribed region of unit circle is presented. Quantitative measures of robustness and disturbance rejection are investigated. A stochastic optimization algorithm is used to effect trade-off between the free design parameters and to accomplish all the design criteria. A numerical example is given to illustra...
متن کاملConstrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm
Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015